
Computer Architecture | Prof. Milo Martin | Superscalar 1

Computer Architecture

Unit 7: Superscalar Pipelines

Slides'developed'by'Milo'Mar0n'&'Amir'Roth'at'the'University'of'Pennsylvania''
with'sources'that'included'University'of'Wisconsin'slides'

by'Mark'Hill,'Guri'Sohi,'Jim'Smith,'and'David'Wood'

Computer Architecture | Prof. Milo Martin | Superscalar 2

A Key Theme: Parallelism

•  Previously: pipeline-level parallelism
•  Work on execute of one instruction in parallel with decode of next

•  Next: instruction-level parallelism (ILP)
•  Execute multiple independent instructions fully in parallel

•  Then:
•  Static & dynamic scheduling

•  Extract much more ILP
•  Data-level parallelism (DLP)

•  Single-instruction, multiple data (one insn., four 64-bit adds)
•  Thread-level parallelism (TLP)

•  Multiple software threads running on multiple cores

Computer Architecture | Prof. Milo Martin | Superscalar 3

“Scalar” Pipeline & the Flynn Bottleneck

•  So far we have looked at scalar pipelines
•  One instruction per stage

•  With control speculation, bypassing, etc.
–  Performance limit (aka “Flynn Bottleneck”) is CPI = IPC = 1
–  Limit is never even achieved (hazards)
–  Diminishing returns from “super-pipelining” (hazards + overhead)

regfile

D$ I$

B
P

An Opportunity…

•  But consider:
ADD r1, r2 -> r3
ADD r4, r5 -> r6
•  Why not execute them at the same time? (We can!)

•  What about:
ADD r1, r2 -> r3
ADD r4, r3 -> r6
•  In this case, dependences prevent parallel execution

•  What about three instructions at a time?
•  Or four instructions at a time?

Computer Architecture | Prof. Milo Martin | Superscalar 4

What Checking Is Required?

•  For two instructions: 2 checks
ADD src11, src21 -> dest1
ADD src12, src22 -> dest2 (2 checks)

•  For three instructions: 6 checks
ADD src11, src21 -> dest1
ADD src12, src22 -> dest2 (2 checks)
ADD src13, src23 -> dest3 (4 checks)

•  For four instructions: 12 checks
ADD src11, src21 -> dest1
ADD src12, src22 -> dest2 (2 checks)
ADD src13, src23 -> dest3 (4 checks)
ADD src14, src24 -> dest4 (6 checks)

•  Plus checking for load-to-use stalls from prior n loads

Computer Architecture | Prof. Milo Martin | Superscalar 5

What Checking Is Required?

•  For two instructions: 2 checks
ADD src11, src21 -> dest1
ADD src12, src22 -> dest2 (2 checks)

•  For three instructions: 6 checks
ADD src11, src21 -> dest1
ADD src12, src22 -> dest2 (2 checks)
ADD src13, src23 -> dest3 (4 checks)

•  For four instructions: 12 checks
ADD src11, src21 -> dest1
ADD src12, src22 -> dest2 (2 checks)
ADD src13, src23 -> dest3 (4 checks)
ADD src14, src24 -> dest4 (6 checks)

•  Plus checking for load-to-use stalls from prior n loads

Computer Architecture | Prof. Milo Martin | Superscalar 6

How do we build such
“superscalar” hardware?

Computer Architecture | Prof. Milo Martin | Superscalar 7

Computer Architecture | Prof. Milo Martin | Superscalar 8

Multiple-Issue or “Superscalar” Pipeline

•  Overcome this limit using multiple issue
•  Also called superscalar
•  Two instructions per stage at once, or three, or four, or eight…
•  “Instruction-Level Parallelism (ILP)” [Fisher, IEEE TC’81]

•  Today, typically “4-wide” (Intel Core i7, AMD Opteron)
•  Some more (Power5 is 5-issue; Itanium is 6-issue)
•  Some less (dual-issue is common for simple cores)

regfile

D$ I$

B
P

Computer Architecture | Prof. Milo Martin | Superscalar 9

A Typical Dual-Issue Pipeline (1 of 2)

•  Fetch an entire 16B or 32B cache block
•  4 to 8 instructions (assuming 4-byte average instruction length)
•  Predict a single branch per cycle

•  Parallel decode
•  Need to check for conflicting instructions

•  Is output register of I1 is an input register to I2?
•  Other stalls, too (for example, load-use delay)

regfile

D$ I$

B
P

Computer Architecture | Prof. Milo Martin | Superscalar 10

A Typical Dual-Issue Pipeline (2 of 2)

•  Multi-ported register file
•  Larger area, latency, power, cost, complexity

•  Multiple execution units
•  Simple adders are easy, but bypass paths are expensive

•  Memory unit
•  Single load per cycle (stall at decode) probably okay for dual issue
•  Alternative: add a read port to data cache

•  Larger area, latency, power, cost, complexity

regfile

D$ I$

B
P

Computer Architecture | Prof. Milo Martin | Superscalar 11

How Much ILP is There?

•  The compiler tries to “schedule” code to avoid stalls
•  Even for scalar machines (to fill load-use delay slot)
•  Even harder to schedule multiple-issue (superscalar)

•  How much ILP is common?
•  Greatly depends on the application

•  Consider memory copy
•  Unroll loop, lots of independent operations

•  Other programs, less so

•  Even given unbounded ILP,
superscalar has implementation limits
•  IPC (or CPI) vs clock frequency trade-off
•  Given these challenges, what is reasonable today?

•  ~4 instruction per cycle maximum

Superscalar Implementation
Challenges

Computer Architecture | Prof. Milo Martin | Superscalar 12

Computer Architecture | Prof. Milo Martin | Superscalar 13

Superscalar Challenges - Front End

•  Superscalar instruction fetch
•  Modest: fetch multiple instructions per cycle
•  Aggressive: buffer instructions and/or predict multiple branches

•  Superscalar instruction decode
•  Replicate decoders

•  Superscalar instruction issue
•  Determine when instructions can proceed in parallel
•  More complex stall logic - order N2 for N-wide machine
•  Not all combinations of types of instructions possible

•  Superscalar register read
•  Port for each register read (4-wide superscalar 8 read “ports”)
•  Each port needs its own set of address and data wires

•  Latency & area ∝ #ports2

Computer Architecture | Prof. Milo Martin | Superscalar 14

Superscalar Challenges - Back End

•  Superscalar instruction execution
•  Replicate arithmetic units (but not all, say, integer divider)
•  Perhaps multiple cache ports (slower access, higher energy)

•  Only for 4-wide or larger (why? only ~35% are load/store insn)

•  Superscalar bypass paths
•  More possible sources for data values
•  Order (N2 * P) for N-wide machine with execute pipeline depth P

•  Superscalar instruction register writeback
•  One write port per instruction that writes a register
•  Example, 4-wide superscalar 4 write ports

•  Fundamental challenge:
•  Amount of ILP (instruction-level parallelism) in the program
•  Compiler must schedule code and extract parallelism

Computer Architecture | Prof. Milo Martin | Superscalar 15

Superscalar Bypass

•  N2 bypass network
–  N+1 input muxes at each ALU input
–  N2 point-to-point connections
–  Routing lengthens wires
–  Heavy capacitive load

•  And this is just one bypass stage (MX)!
•  There is also WX bypassing
•  Even more for deeper pipelines

•  One of the big problems of superscalar
•  Why? On the critical path of

single-cycle “bypass & execute”
loop

versus

Computer Architecture | Prof. Milo Martin | Superscalar 16

Not All N2 Created Equal

•  N2 bypass vs. N2 stall logic & dependence cross-check
•  Which is the bigger problem?

•  N2 bypass … by far
•  64- bit quantities (vs. 5-bit)
•  Multiple levels (MX, WX) of bypass (vs. 1 level of stall logic)
•  Must fit in one clock period with ALU (vs. not)

•  Dependence cross-check not even 2nd biggest N2 problem
•  Regfile is also an N2 problem (think latency where N is #ports)
•  And also more serious than cross-check

Computer Architecture | Prof. Milo Martin | Superscalar 17

Mitigating N2 Bypass & Register File
•  Clustering: mitigates N2 bypass

•  Group ALUs into K clusters
•  Full bypassing within a cluster
•  Limited bypassing between clusters

•  With 1 or 2 cycle delay
•  Can hurt IPC, but faster clock

•  (N/K) + 1 inputs at each mux
•  (N/K)2 bypass paths in each cluster

•  Steering: key to performance
•  Steer dependent insns to same cluster

•  Cluster register file, too
•  Replica a register file per cluster
•  All register writes update all replicas
•  Fewer read ports; only for cluster

Computer Architecture | Prof. Milo Martin | Superscalar 18

Mitigating N2 RegFile: Clustering++

•  Clustering: split N-wide execution pipeline into K clusters
•  With centralized register file, 2N read ports and N write ports

•  Clustered register file: extend clustering to register file
•  Replicate the register file (one replica per cluster)
•  Register file supplies register operands to just its cluster
•  All register writes go to all register files (keep them in sync)
•  Advantage: fewer read ports per register!

•  K register files, each with 2N/K read ports and N write ports

DM

RF0

RF1

cluster 0

cluster 1

Another Challenge: Superscalar Fetch

•  What is involved in fetching multiple instructions per cycle?
•  In same cache block? → no problem

•  64-byte cache block is 16 instructions (~4 bytes per instruction)
•  Favors larger block size (independent of hit rate)

•  What if next instruction is last instruction in a block?
•  Fetch only one instruction that cycle
•  Or, some processors may allow fetching from 2 consecutive blocks

•  What about taken branches?
•  How many instructions can be fetched on average?
•  Average number of instructions per taken branch?

•  Assume: 20% branches, 50% taken → ~10 instructions

•  Consider a 5-instruction loop with an 4-issue processor
•  Without smarter fetch, ILP is limited to 2.5 (not 4, which is bad)

Computer Architecture | Prof. Milo Martin | Superscalar 19

Increasing Superscalar Fetch Rate

•  Option #1: over-fetch and buffer
•  Add a queue between fetch and decode (18 entries in Intel Core2)
•  Compensates for cycles that fetch less than maximum instructions
•  “decouples” the “front end” (fetch) from the “back end” (execute)

•  Option #2: “loop stream detector” (Core 2, Core i7)
•  Put entire loop body into a small cache

•  Core2: 18 macro-ops, up to four taken branches
•  Core i7: 28 micro-ops (avoids re-decoding macro-ops!)

•  Any branch mis-prediction requires normal re-fetch

•  Other options: next-next-block prediction, “trace cache”
Computer Architecture | Prof. Milo Martin | Superscalar 20

regfile

D$
I$

B
P

insn queue
also loop stream detector

Computer Architecture | Prof. Milo Martin | Superscalar 21

Multiple-Issue Implementations
•  Statically-scheduled (in-order) superscalar

•  What we’ve talked about thus far
+  Executes unmodified sequential programs
–  Hardware must figure out what can be done in parallel
•  E.g., Pentium (2-wide), UltraSPARC (4-wide), Alpha 21164 (4-wide)

•  Very Long Instruction Word (VLIW)
-  Compiler identifies independent instructions, new ISA
+  Hardware can be simple and perhaps lower power
•  E.g., TransMeta Crusoe (4-wide)
•  Variant: Explicitly Parallel Instruction Computing (EPIC)

•  A bit more flexible encoding & some hardware to help compiler
•  E.g., Intel Itanium (6-wide)

•  Dynamically-scheduled superscalar (next topic)
•  Hardware extracts more ILP by on-the-fly reordering
•  Core 2, Core i7 (4-wide), Alpha 21264 (4-wide)

Computer Architecture | Prof. Milo Martin | Superscalar 22

Multiple Issue Redux
•  Multiple issue

•  Exploits insn level parallelism (ILP) beyond pipelining
•  Improves IPC, but perhaps at some clock & energy penalty
•  4-6 way issue is about the peak issue width currently justifiable

•  Low-power implementations today typically 2-wide superscalar

•  Problem spots
•  N2 bypass & register file → clustering
•  Fetch + branch prediction → buffering, loop streaming, trace cache
•  N2 dependency check → VLIW/EPIC (but unclear how key this is)

•  Implementations
•  Superscalar vs. VLIW/EPIC

[spacer])

